
J .  Fluid Meck. (1972), vo2. 56, part 4, pp .  619-627 

Printed in Great Britain 
619 

Heat transfer in a periodic boundary layer near a 
two-dimensional stagnation point 

By HIROSHI ISHIGAKI 
National Aerospace Laboratory, Kakuda Branch, Miyagi, Japan 

(Received 17 July 1972) 

Following the previous velocity-field study (Ishigaki 1970), this paper studies 
how the temperature field in the laminar boundary layer near a two-dimensional 
stagnation point responds to the main-stream oscillation. The time-mean tem- 
perature field is of particular interest and is studied in detail. The velocity field 
is treated as known and is taken from the previous paper. In  0 3 the solutions over 
the whole frequency range are obtained under the assumption of small amplitude 
oscillation and the results are compared with the existing approximate solutions 
for low and high frequency in terms of heat transfer. Time-mean heat transfer 
decreases at low frequency, but slightly increases at high frequency. Two factors 
that cause time-mean modification of the temperature field are examined quanti- 
tatively. In  $ 4  the finite amplitude case is treated under the assumption of 
high-frequency oscillation and a few examples of the time-mean temperature 
profile are shown. 

1. Introduction 
In  a previous paper Ishigaki (1970) studied the time-mean characteristics of 

the laminar boundary layer near a two-dimensional stagnation point for the 
case when the velocity of the oncoming stream relative to the body oscillates. 
In  this paper the corresponding heat-transfer problem is studied for the case 
when the body is heated to a constant temperature, and it is shown how the 
temperature field responds to the main-stream oscillation. 

Theoretical studies on heat-transfer fluctuation in a periodic boundary layer 
near a stagnation point have been made by Lighthill (1954), Gribben (1961) and 
Mori & Tokuda (1966) for two-dimensional flow and by Yeh & Yang (1965) and 
Ghohal & Ghohal (1970) for three-dimensional flow. These studies show that, 
at constant velocity amplitude of the main-stream oscillation, the amplitude of 
the heat-transfer fluctuation decreases with increasing frequency and the phase 
always lags that of the main-stream oscillation, the amplitude being inversely 
proportional to the frequency and the phase lag approaching the limit 90' a t  
high frequencies. The time-mean heat transfer in the two-dimensional stagnation 
flow was studied by Gersten (1965), who gave the result that the time-mean 
heat-transfer rate is smaller than that without oscillation. 

I n  these studies approximate solutions were obtained for the cases of low and 
high frequency; thus the uncertainty at intermediate frequency was inevitable. 
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Moreover, these studies were restricted to small amplitude oscillation. In  $ 3  
of the present paper the solutions over the whole frequency range are obtained 
under the assumption of small amplitude oscillation, and the treatment for finite 
amplitude oscillation is made in $4 under the assumption of high-frequency 
oscillation. 

There is a time-mean secondary flow induced by the oscillation, whose origin 
lies in the nonlinearity of the governing equation. This effect was first shown 
clearly by Schlichting (1932) in the case of a circular cylinder oscillating in a fluid 
at rest. When a mean flow is present, the time-mean velocity profile differs from 
that without oscillation because of the appearance of the secondary flow. Lin 
(1957) showedthat thedifferencebetweenthemisstronglyinfluencedbya pressure 
gradient for high-frequency oscillation, and a quantitative comparison of the 
effect of the pressure gradient on the skin friction was given by Ishigaki (1970, 
1971a) for Hiemenz and Blasius flow. This secondary flow naturally affects the 
time-mean heat transfer. 

In an incompressible fluid flow with negligible viscous dissipation the oscilla- 
tion introduces a time-mean modification in the temperature field through two 
effects. The first is the heat convection by the above-mentioned secondary flow. 
The second effect arises from the correlation between the fluctuations of velocity 
and temperature, and, as in the heat-transfer analysis of the turbulent flow, 
this effect may conveniently be treated as either an apparent heat source or an 
apparent change in heat conduction. It is shown in $ 3  how the time-mean heat 
transfer is influenced by these two factors, and some remarks concerning the 
effect of pressure gradient on heat transfer are given in 3 5. 

2. Basic equations 
Let us consider a two-dimensional unsteady laminar flow with negligible 

viscous dissipation of an incompressible fluid with constant properties. The 
boundary-layer equations of continuity, momentum and energy are written as 

au av -+- = 0, 
ax ay 

au au au au au azu 
-+u-+w- = - + U - + Y -  
at ax ay at ax ayz’ 

at ax ay a y ~ ,  
aT i3T aT a2T 
-+U-+W- = K- 

where x and y are distances parallel and normal to the surface, u and v are the 
corresponding velocity components, t is time, T temperature, U the velocity at  
the outer edge of the boundary layer, Y kinematic viscosity and K thermal con- 
ductivity. The boundary conditions are 

u = v =  0, T = T, at y =  0, u = U(x,t), T = Tm as y+a ,  (4) 

where T, and T, are constants. Near a front stagnation point of a cylindrical body, 
the main-stream velocity is assumed to be the real part of the form 

U(x, t )  = Ax( 1 + E dot), (5) 
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where w is frequency and A and B are constants. Furthermore, the non- 
dimensional temperature is defined as 

e = (T - TJ(T, - T~). (6) 

Since the temperature field does not affect the velocity field because of the 
constant-properties assumption, the particular velocity field is treated as known, 
being taken from Ishigaki (1970), where it was calculated. 

3. Small amplitude case 
When E is small, the solutions are assumed in the forms 

u(x ,  y, t )  = A x [ f ' ( q )  +sg'(y)  eiot + e2{G'(7) + Gh(7) e2iwt) + . . .I, 
v(x, y, t )  = - ( A v ) ~  [f(q) + cg(7) eiWt + e2{G(q) + G,(q) etiwt} + . . .I,] (7) 

O(x, y,  t )  = h(7) + ek(7)  eiwt + @{K(q) + K,(q) eZiwt} + . . ., 
in which only the real parts are to be taken and primes denote differentiation with 
respect to 7 = y(A/v)&.  The continuity equation (1) is then satisfied identically. 
By substituting ( 5 ) ,  (6) and (7) into (2) and (3) and equating terms of the same 
order in E ,  sets of ordinary differential equations are obtained. The functions 
f ( q )  and h(q) are the well-known steady-flow solutions (see Schlichting 1968). 

The equation for k(7) is 

(l/Pr)k"+fk'-ick = -gh' ,  (8) 

with k = O  a t  7 = 0  andas q+w, 

where Pr = U/K is the Prandtl number and c = @ / A  is the frequency parameter. 
This equation is solved numerically for Pr = 0.72 and various values of u. 
Approximate solutions have. been obtained for the cases when u is small and 
large. Mori & Tokuda (1966) obtained the following approximate formulae for 
the heat-transfer fluctuation: 

(4 - 0.349ia + 0.229(bj2 + . . . (small c), (9 a) 

IF +-- (%a) (icy @up+ *.*  (large c). (9b) 
k'(O)/h'(O) = 0.541 1-082 4.892 

The amplitude and phase angle of heat-transfer fluctuations of order E are shown 
in figure 1, in which present numerical results are shown by solid lines and the 
above approximate results are shown by dotted lines, broken lines showing the 
asymptotic values, the first term only in (9b), obtained by Lighthill. Mori & 
Tokuda also presented the approximating function obtained by joining (9a) and 
(9b) smoothly, and the values estimated from the function lie within 1-5 % 
of the present results. 

The equation for the time-independent function K(7)  is 

(l /Pr) K" +fK' = - Ch' - $(g,ki + gi k;), (10) 

with K = O  at q = O  andas q+m,  
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FIGURE 1. Amplitude and phase angle of heat-transfer fluctuations for Pr = 0-72. 
- - - -, Mori & Tokuda (1966) ; - - - , Lighthill (1954). 

FIGURE 2. Plots of K ,  K ,  and K ,  for Pr = 0-72. (a) u = 0. (b) u = 5.0. 
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where subscripts r and i denote real and imaginary parts. It can be seen that the 
time-mean deviation of the temperature field from that without oscillation 
arises from two factors. To see the contributions of each factor, we let 

= &(?I) + K2(7), 
which then satisfy the following equations: 

( l / P r )  +fK; = - Gh', (12a)  

(12b) 

K,=K,=O a t  q = O  andae q+w. 

Kl is associated with the heat convection by the secondary flow and K ,  is 
associated with the apparent heat source due to the correlation between fluctua- 
tions of velocity and temperature. These equations are solved numerically for 
Pr = 0.72. K ,  which is proportional to the time-mean modification of the 
temperature field, is shown in figure 2 (a) for cr = 0 and in figure 2 (b) for a = 5, 
the functions K ,  and K2 also being shown in these figures. Wigwe 3 shows the 
variation of K ' ( O ) ,  KI(0) and Ki(0) with u. The time-mean heat flux 

( 1/Pr)  r; +fK; = - $( g,k: + gi ki), 

is given to be 

in which po = 0.50l4h(TW- !Pa) (A/v)* is the heat flux without oscillation and h 
is the heat conductivity of the fluid. Dotted lines in figure 3 show the following 
approximate results for Pr = 0.72 obtained by the same method as that 
employed by Gersten (1965): 

-A + 0-034a2 + . . . 
- 0*307/cr+ ... (large a).  

(small a), 
K ( O ) / h ' ( O )  = { 
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For Pr = 0.70 Gersten gave the coefficient 0.031 instead of 0.034 and -0.302 
for -0.307. The function K ,  acts to promote heat transfer while K z  prevents 
heat transfer. Pigure 2 (a )  shows that the temperature rise due to the apparent 
heat source overcomes the temperature decrease due to the convection by the 
secondary flow, thus the net heat transfer decreases at  low frequency. At  some 
intermediate frequency they may cancel out near the wall to produce no net 
heat-transfer deviation. At high frequency, as is seen from figure 2 (b ) ,  K ,  over- 
comes K ,  near the wall and the net heat transfer slightly increases. At higher 
frequencies both K ,  and K ,  decrease in magnitude and the effect of oscillation on 
the time-mean heat transfer tends to zero. Pigure 3 clearly shows the dependence 
of heat-transfer variation on c, 

4. Finite amplitude case 
In  the following it is intended to apply Lin's (1957) method to the heat-transfer 

problem. As in turbulent-flow analysis, it is assumed that the velocity and 
temperature in the boundary layer are separated into time-mean and fluctuating 

where an overbar denotes a time-mean quantity. On substituting (15) into (l), 
(2) and (3) and taking time average, the time-mean equations are obtained. 
The fluctuating equations are obtained by subtracting these time-mean equations 
from the corresponding full equations. The time-mean and fluctuating equations 
for the temperature field are 

- - 
8 = 1 ,  6 ,=0  at y = O ,  8 = 8 , = 0  as y-tco. 

For high-frequency oscillation the velocity field is given by 

ut = eAx(1- exp [ - (iw/v)* y]} eiwt, 

vt = - eA (v/iw)+ {g(v/iw)* - 1 + exp [ - (iw/v)* 91) eimt, 
(18) I 

for fluctuating components (Lin 1957), and 

ii = AZP'(T), v = - (AV)*P(T), (19) 

for time-mean components (Ishigaki 1970). 
When the flow oscillation is of high frequency, (17) may be simplified to 
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FIGURE 4. Time-mean temperature proses for Pr = 0.72 and E = 0 (H’(0) = -0.5014), 

E = 2, Q = 10 (H’(0) = -0*5299), and E = 2, Q = 5 (H’(0)  = -0.6059). 

This is a reasonable simplification when the following assumptions are valid: 

%>Ti-, Ut%’ or 0- 1,s. 
at ax 

These are equivalent to the assumptions made in the velocity-field analysis. 

If we write - 
0 t h  y ,  t )  = P ( 7 )  eiot, O(X’ y )  = H(7)’ (22) 

the fluctuating temperature equation (20)  becomes 

with p = O  at 7 = 0  andas 7+00. 

The formal solution which contains the unknown function H(7) is obtained as 

eH’(0) 
+ (1 - Pr) ir (i+ exp[-(iPra)+q]. (24) 

If we replace H(7) by the known function h(7) in (7)’ this solution reduces to 
Lighthill’s asymptotic form of the small amplitude case. Substituting (18), (19) 
and (24) into (16), the time-mean temperature equation becomes 

40 

H = l  at  q = O ,  H = O  as q-too.  
FLNI 56 
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This becomes a more suitable form to calculate when both sides are divided by 
H’(0) .  Solutions are obtained numerically for given values of e and u. Some 
typical examples of temperature profiles in the boundary layer are shown in 
figure 4. This figure shows that, even if the oscillation amplitude becomes large, 
the time-mean temperature field may be influenced by high-frequency oscillation 
only weakly. Thus, the function H ( 7 )  in (24) can be approximately replaced by 
h(r ) ,  and Lighthill’s asymptotic form is still valid. 

5. Concluding remarks 
Concerning the heat-transfer fluctuation, the general trends mentioned in the 

introduction to this paper are confirmed by more exact results in $ 3  and the 
features at  high frequency are proved t o  be retained for finite amplitude oscilla- 
tion in $ 4. The time-mean temperature field is the main interest of this paper and 
is studied in detail. The time-mean heat transfer decreases at  low frequency but 
slightly increases at  high frequency, the effect of oscillation tending to zero at  
higher frequencies. Two factors that cause the time-mean deviation of the 
temperature field from that without oscillation are examined and the above 
variation of heat transfer with frequency is explained. 

In  Blasius flow in which pressure gradient is zero, negligible secondary flow 
at high frequency is expected from Lin’s theory and K,  will be very small. Since 
K ,  is not influenced by the pressure gradient to first order, the time-mean heat- 
transfer increase cannot be expected at  any frequency in Blasius flow (see 
Ishigaki 1971b). Both the velocity and temperature fields are hardly influenced 
by the pressure gradient at  low frequency. As the heat-transfer increase in 
stagnation flow at high frequency is unexpectedly slight, however, it may be 
concluded that the practical effect of the pressure gradient on periodic-boundary- 
layer heat transfer is negligibly small, although the effect on the velocity field is 
strong. In  some literature discussing the effect of main-stream turbulence on 
laminar heat transfer, it has sometimes been said that the considerable effect 
near a stagnation point of a cylindrical body might be explained qualitatively by 
Lin’s theory (e.g. Schlichting 1968). The experimental results on the main-stream 
turbulence effect show the two remarkable features that negligible heat-transfer 
effect is observed in Blasius flow and skin frictions in Blasius and Hiemenz flow 
are not subjected to a marked influence. Considering the results of the periodic- 
flow heat-transfer studies collectively, the above two features cannot be explained 
by the similarity with the effect of oscillation and therefore the above hypothesis 
may not be accepted. 
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